Unmet challenges in high-risk hematological malignancies: from benchside to clinical practice

Turin, September 13-14th 2018

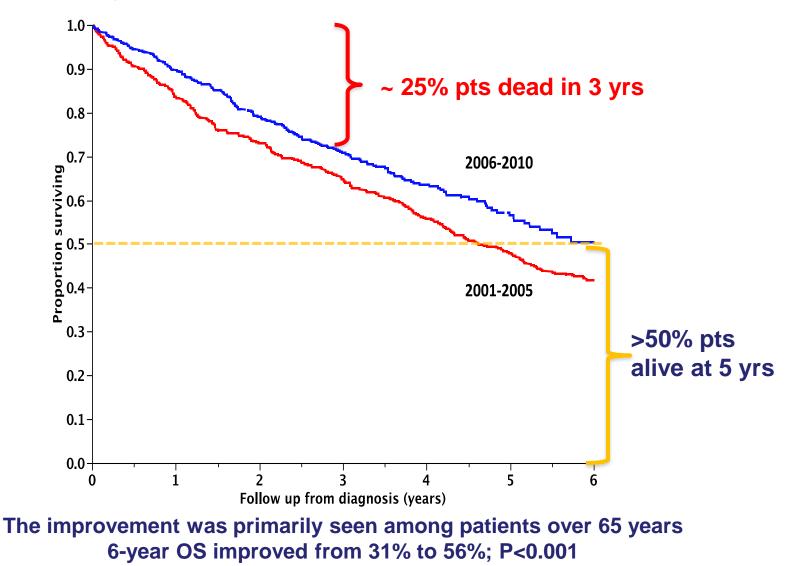
How I treat elderly high risk Multiple Myeloma

Alessandra Larocca, MD, PhD

Myeloma Unit, Division of Hematology

University of Torino, Azienza Ospedaliero-Universitaria Città della

Salute e della Scienza di Torino

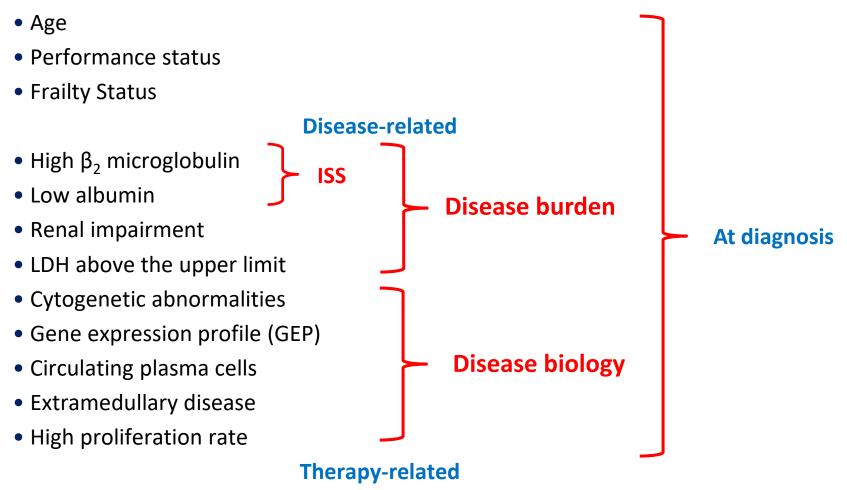

Disclosures for Alessandra Larocca, MD, PhD

Research Support/P.I.	No relevant conflicts of interest to declare
Employee	No relevant conflicts of interest to declare
Consultant	No relevant conflicts of interest to declare
Major Stockholder	No relevant conflicts of interest to declare
Speakers Bureau	No relevant conflicts of interest to declare
Honoraria	Celgene, Janssen-Cilag, BMS, Amgen
Scientific Advisory Board	BMS

Presentation includes discussion of the off-label use of a drug or drugs

Introduction of novel agents has improved OS in MM

Myeloma Is Not One Disease



Median follow-up 5.9 years

Kumar SK, et al. Leukemia. 2014;28:1122-1128

Prognostic factors in MM

- Quality of response
- Early relapse/Primary refractory MM/No response PI/IMiD

(Elderly) High Risk MM

- High-risk (HR) cytogenetics
- ISS and R-ISS stage III
- Renal impairment
- Age and frailty
- Plasma cell Leukemia (PCL)
- Extra-medullary (EM) disease
- No response PI/IMiD, primary refractory disease

(Elderly) High Risk MM

- High-risk (HR) cytogenetics
- ISS and R-ISS stage III
- Renal impairment
- Age and frailty
- Plasma cell Leukemia (PCL)
- Extra-medullary (EM) disease
- No response PI/IMiD, primary refractory disease

Characteristics (Elderly) High-risk MM

- Disease with adverse clinical and biological features that lead to early progression
- Can present similarly to standard-risk or alternatively with an aggressive clinical course
- Risk profile may change from diagnosis to subsequent relapses

Open issues Elderly High-risk MM

- Improvements in outcomes have not been as great as in TE patients
- No treatment regimen has demonstrated sustained and consistent survival benefit
- Relatively small number of elderly HR MM enrolled in clinical trials
- There is a **lack of prospective randomized trials**, which might strongly support choices of therapy in this setting (meta/pooled analysis or subgroup analysis)

Summary of cytogenetic risk features

	High-risk	Standard-risk
Cytogenetic abnormality	FISH: t(4;14), t(14;16), t(14;20), del(17/17p), gain(1q) Non hyperdiploid Karyotipe Karyotype del(13) GEP: high-risk signature	All others including: FISH: t(11;14), t(6;14)

Cytogenetic abnormalities by FISH currently are clinically relevant prognostic factors in MM.

The IMWG consensus panel on FISH advises to test for the presence of del(17p), t(4;14), and possibly t(14;16).

An extended panel, which may be incorporated in clinical trials, includes t(11;14), t(14;20), gain(1q), del(1p), del(13q), and ploidy status.

VOLUME 31 · NUMBER 22 · AUGUST 1 2013

JOURNAL OF CLINICAL ONCOLOGY

Chromosomal Abnormalities Are Major Prognostic Factors in Elderly Patients With Multiple Myeloma: The Intergroupe Francophone du Myélome Experience

Hervé Avet-Loiseau, Cyrille Hulin, Loic Campion, Philippe Rodon, Gerald Marit, Michel Attal, Bruno Royer, Mamoun Dib, Laurent Voillat, Didier Bouscary, Denis Caillot, Marc Wetterwald, Brigitte Pegourie, Gerard Lepeu, Bernadette Corront, Lionel Karlin, Anne-Marie Stoppa, Jean-Gabriel Fuzibet, Xavier Delbrel, Francois Guilhot, Brigitte Kolb, Olivier Decaux, Thierry Lamy, Laurent Garderet, Olivier Allangba, Francois Lifermann, Bruno Anglaret, Philippe Moreau, Jean-Luc Harousseau, and Thierry Facon

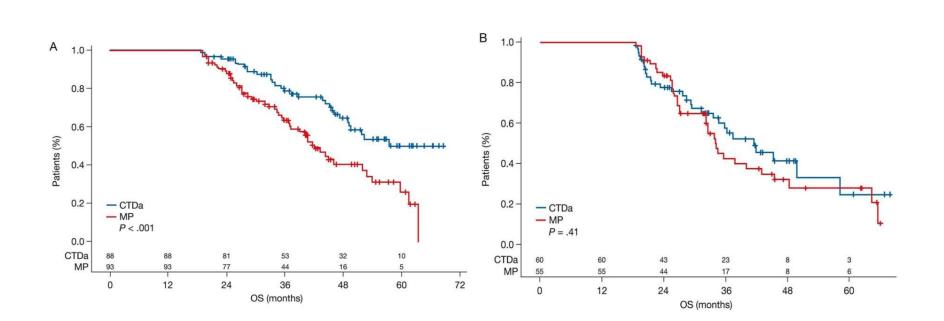
- Retrospective analysis of **1,890 patients** (median age 72 ys; 66-94 ys)
- The incidence of t(4;14) was not uniform over age, with a marked decrease in the oldest patients
- t(4;14) and del(17p) are major prognostic factors in elderly patients with MM, both for PFS and OS, indicating that these two abnormalities should be investigated at diagnosis of MM, regardless of age.
- The prognostic value of t(4;14) and del(17p) was retained in patients treated with novel therapies, such as MPV or Rd

Revised ISS staging system

A total of **3,060 pts** with **NDMM** enrolled onto 11 international, multicenter clinical trials

All patients received new drugs (IMIDs or PIs)

Prognostic factor		Criteria
	I	Serum β_2 -microglobulin < 3.5 mg/L; serum albumin \geq 3.5 g/dL
ISS stage	II	Not ISS stage I or III
	III	Serum β_2 -microglobulin > 5.5 mg/L
CA by iFISH	High risk	Presence of del(17p) and/or translocation t(4;14) and/or translocation t(14;16)
	Standard risk	No high-risk CA
LDH	Normal	Serum LDH < upper limit of normal
LDH	High	Serum LDH > upper limit of normal
		A new model for risk stratification for MM
	I	ISS stage I, standard-risk CA by iFISH and normal LDH
R-ISS stage	II	Not R-ISS stage I or III
	III	ISS stage III and either high-risk CA by iFISH or high LDH
l		

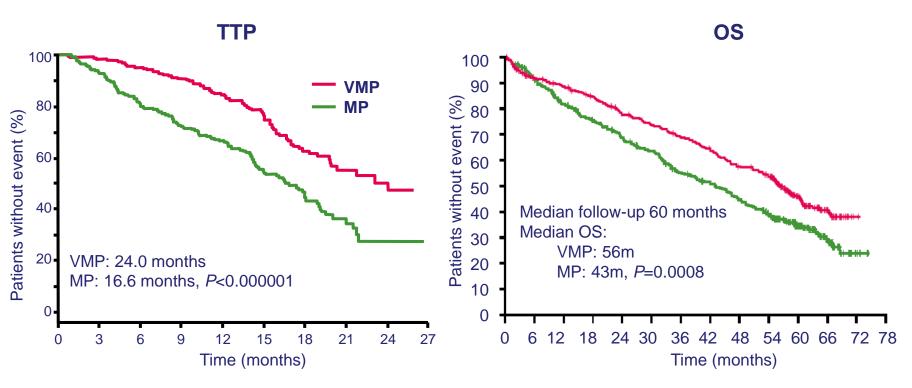

CA, chromosomal abnormalities; iFISH, interphase fluorescent *in situ* hybridisation; ISS, International Staging System; R-ISS, Revised International Staging System.

Why risk stratification?

- Two important goals
 - Counsel: Need to provide patient with realistic expectations based on the currently available treatments
 - Therapy: Decide if particular therapies can be chosen based on their differential effects on the highrisk and standard-risk disease

Thalidomide-based treatments

Adverse cytogenetic profiles


Inability of Thalidomide to either improve or overcome the adverse prognosis of high-risk cytogenetics

Sonneveld P, et al.. Blood 2016; 127:2955-2962

Favorable cytogenetic profiles

Bortezomib-melphalan- prednisone (VMP) vs Melphalan-prednisone (MP): VISTA trial

CR 30% vs 4% Median OS benefit: 13.3 mo

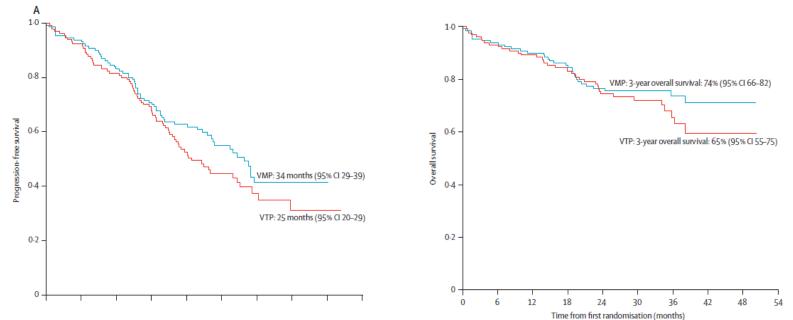

G3-4 AEs: GI (19%), PN (13%), Varicella Virus Zoster reactivation (3%)

VMP is one standard of care

9 cycles: bortezomib twice weekly x 4 cycles weekly x 5 cycles

San Miguel et al. JCO 2013; 31(4):448-55

Bortezomib-melphalan- prednisone (VMP) vs Melphalan-prednisone (MP): VISTA trial


26 patients with HR and 142 patients with standard cytogenetic profiles within the VMP arm, had the same rate of CR (28%), with similar TTP (P = 0.55) and OS (P = 0.99).

HR cytogenetics did not influence outcome when compared with SR

9 cycles: bortezomib twice weekly x 4 cycles weekly x 5 cycles

San Miguel et al. JCO 2013; 31(4):448-55

VMP vs VTP induction cycles* followed by maintenance VT vs VP: PETHEMA TRIAL

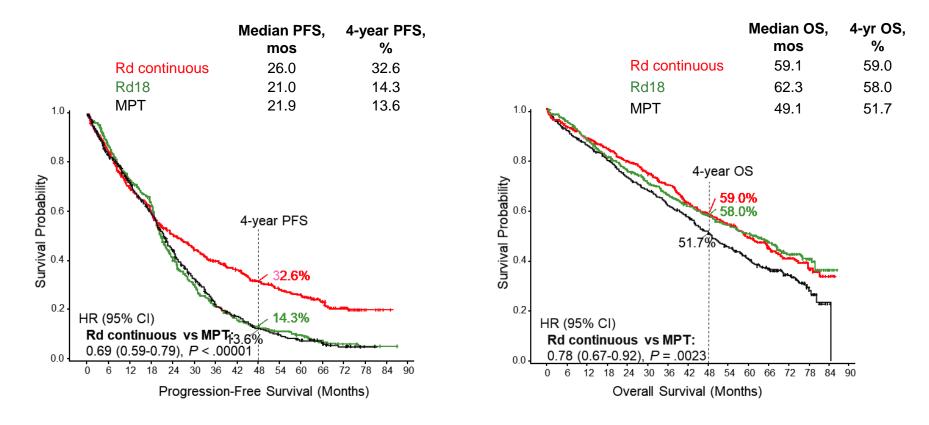
- 44 High Risk vs 187 SR patients.
- HR patients had shorter PFS (24 vs 33 mo, HR 0.6) and shorter OS (3-year OS 55% vs 77%, HR 0.4, p=0.001) than SR patients.

These regimens did not overcome the negative prognosis of HR cytogenetics. However, few patients were analyzed.

*6 cycles: bortezomib twice weekly for the first cycle, followed by once weekly for 5 cycles

Perspectives

S blood


Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group

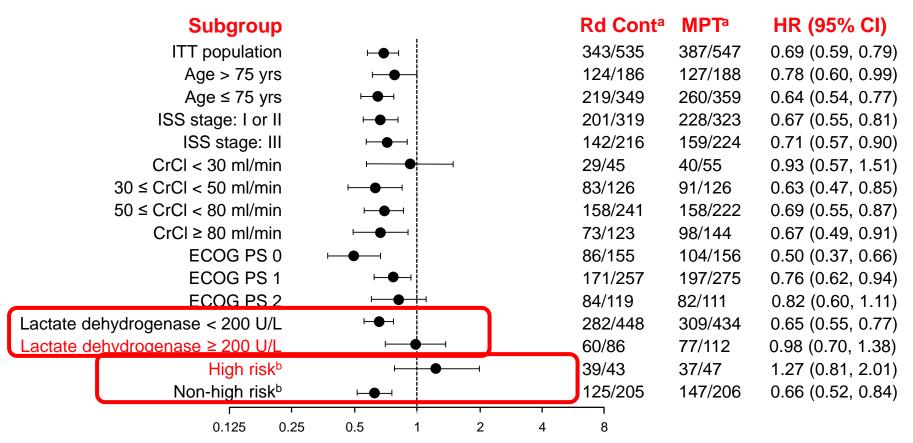
Consensus statement transplant ineligible patients

- Data in non TE patients are scarce.
- VMP may partly restore PFS in HR cytogenetics

Melphalan-prednisone-thalidomide (MPT) vs lenalidomidedexamethasone (Rd18) vs continuous Rd: FIRST trial

Rd continuous significantly extended PFS and OS vs MPT

Rd is one standard of care


^a PFS is based on investigator assessment of IMWG criteria; Data cutoff: January 21, 2016. HR, hazard ratio; IMWG, International Myeloma Working Group; MPT, melphalan, prednisone, thalidomide; PFS, progression-free survival; Rd continuous, lenalidomide plus low-dose dexamethasone until disease progression; Rd18, lenalidomide plus low-dose dexamethasone for 18 cycles.

Facon T et al. ASH 2016, oral presentation.

FIRST trial

Effect of subgroup on progression-free survival

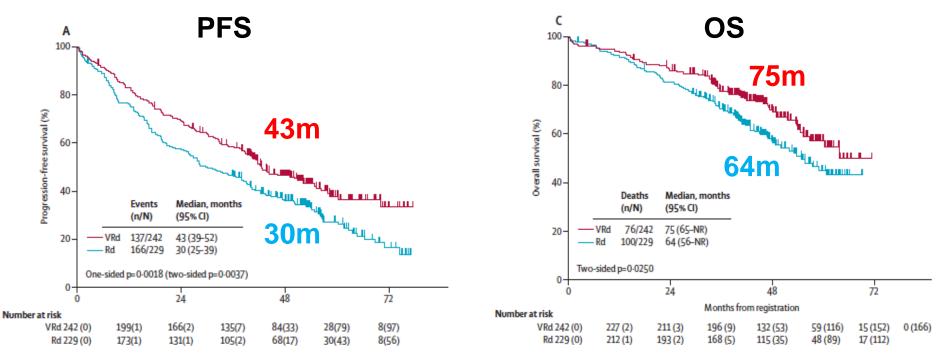
PFS favored Rd continuous over MPT in the majority of subgroups analyzed

^a Number of events/number of patients.

^b Complete cytogenetics profile for 501 patients (248 in Rd continuous and 253 in MPT); high-risk cytogenetics included t(4;14), t(14;16), and del(17p).

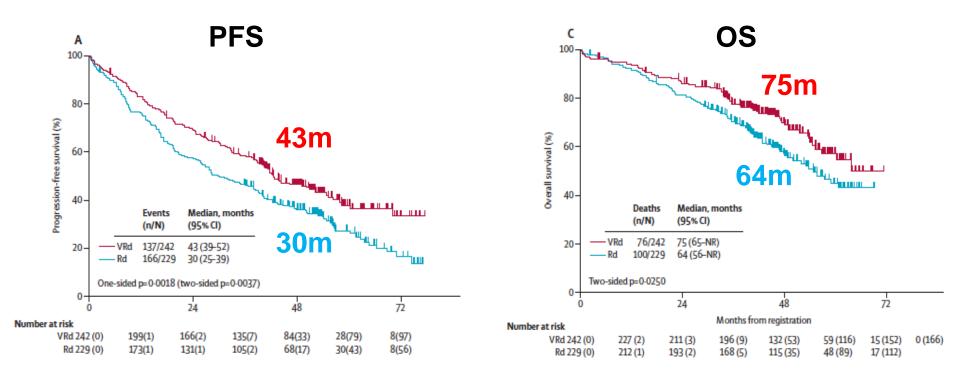
CrCl, creatinine clearance; ECOG PS, Eastern Cooperative Oncology Group performance status; FIRST, Frontline Investigation of Revlimid and Dexamethasone versus Standard Thalidomide; HR, hazard ratio; ISS, International Staging System; ITT, intent to treat; MPT, melphalan, prednisone, thalidomide; PFS, progression-free survival; Rd continuous, lenalidomide plus low-dose dexamethasone until disease progression.

Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group

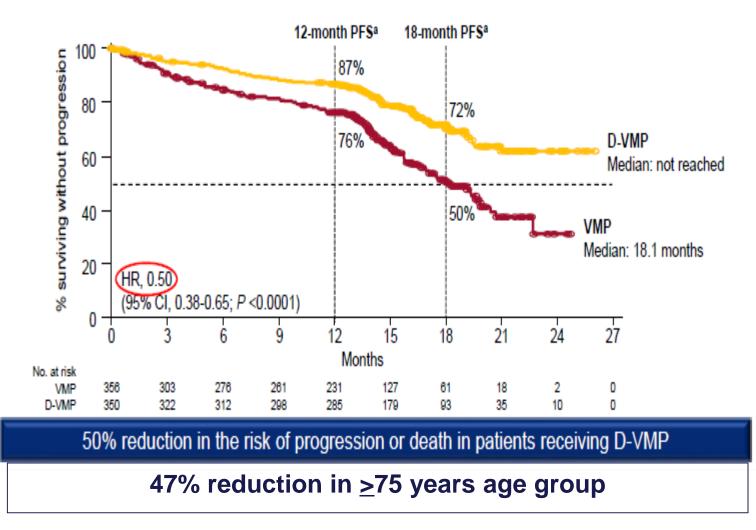

Consensus statement transplant ineligible patients

- Data in non TE patients are scarce.
- VMP may partly restore PFS in HR cytogenetics
- There are no data suggesting that Rd may improve outcome with HR cytogenetics

VRd vs continuous Rd: SWOG trial


The study included both younger and elderly patients (median age was 63 years and 43% were ≥65 years)

ORR: 81% vs 71% CR 16% vs 8 % G3-4 AEs: PN 33%


VRd-Rd vs continuous Rd: SWOG trial

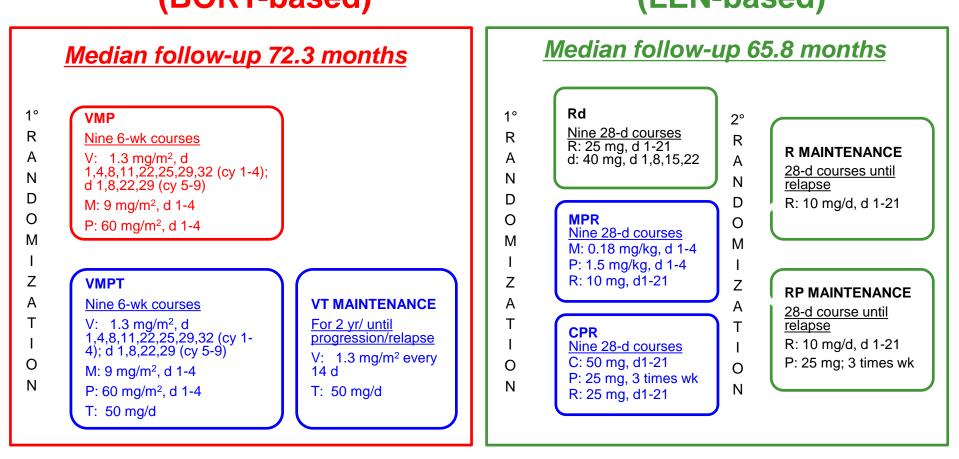
- Evaluable high risk cytogenetic patients n=44 (cut-off values 5%).
- Median PFS was 16 vs 38 months with Rd vs VRd in 44 HR patients, and 15 vs 34 months in17 patients with t(4;14) by FISH, respectively.
- These differences were not significant (p=0.19 and 0.96, respectively).

Daratumumab-VMP vs VMP: Alcyone trial

• Median (range) follow-up: 16.5 (0.1-28.1) months

*9 cycles: bortezomib twice weekly for the first cycle, followed by once weekly

Daratumumab-VMP vs VMP: Alcyone trial

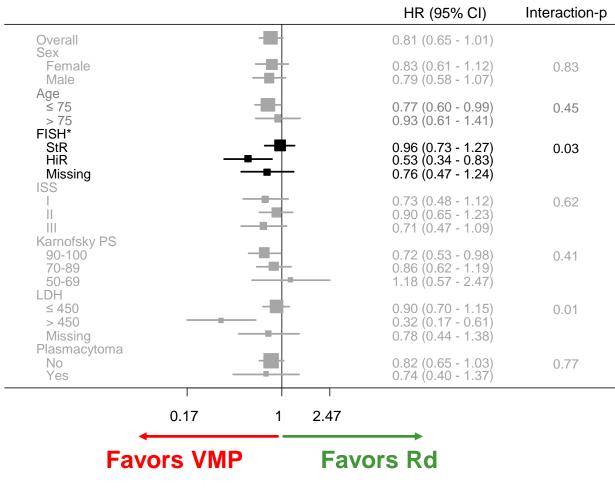

		VMP Median months)		D-VMP Median months)	HR (95% CI)			VMP Median months)	N	D-VMP Median months)	ŀ	IR (95% CI)
Sex							Baseline hepatic					1	
Male	167	18.1	160	NE	I I II	0.60 (0.42-0.87)	function						
Female	189	17.9	190	NE	HH-I	0.41 (0.28-0.61)	Normal	303	19.1	301	NE	Hei	0.53 (0.40-0.71)
							Impaired	52	13.5	46	NE	HeH	0.42 (0.22-0.80)
Age <75 years	240	17.0	246	NE		0.40 (0.08.0.80)	ISS staging						
	249	17.9			H	/	1	67	19.4	69	NE	H●Ĥ	0.50 (0.24-1.05)
≥75 years	107	20.4	104	NE	нeн	0.53 (0.32-0.85)		160	17.5	139	NE	Hei	0.49 (0.32-0.73)
Race							III	129	16.8	142	NE	Hei	0.53 (0.35-0.79)
White	304	18.1	297	NE		0.56 (0.42-0.74)	Type of MM						
Other	52	16.8	53	NE	H+H	0.26 (0.12-0.57)	lgG	218	17.4	207	NE	Hei	0.45 (0.32-0.64)
							Non-IgG ^{a,b}	83	NE	82	NE	+•+	0.81 (0.48-1.37)
Region							Cytogenetic risk						
Europe	295	18.1	289	NE	lei	0.57 (0.43-0.76)	High risk	45	18.1	53	18.0	нéн	0.78 (0.43-1.43)
Other	61	17.5	61	NE	нeн	0.22 (0.10-0.50)	Standard risk	257	17.4	261	NE	Hel	0.39 (0.28-0.55)
Baseline renal function (CrCl)							ECOG performance status						
>60 mL/min	211	18.3	200	NE	H	0.63 (0.45-0.88)	0	99	19.4	78	NE	H	0.40 (0.21-0.74)
≤60 mL/min	145	16.9	150	NE	H●H	0.36 (0.24-0.56)	1-2	257	17.6	272	NE	Hel	0.52 (0.39-0.70)
					D.1 D-VMP	1 10 Favor VMP						D.1 1 D-VMP Fa	10

D-VMP prolonged PFS across all subgroups analyzed

The hazard ratio for progression or death in the daratumumab group was higher among patients with HR cytogenetic profile (0.78) than standard-risk (0.39). Few patients were analyzed.

Mateos MV et al. NEJM 2017

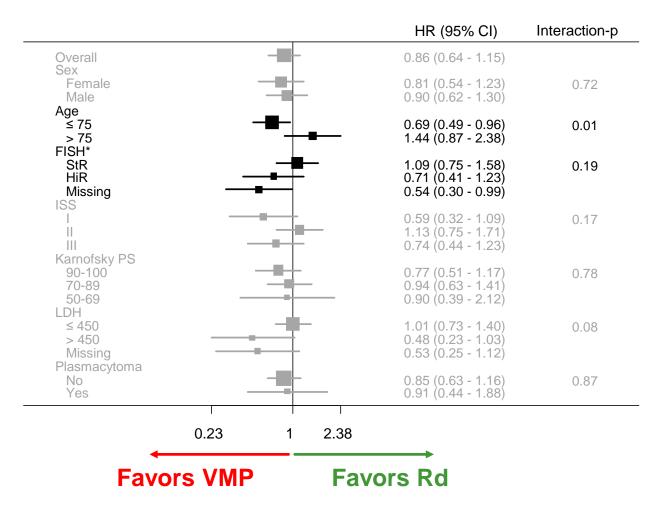
VMP (bort twice or once weekly) or modified-Rd Impact on High Risk Cytogenetic Transplant-Ineligible Patients with Newly Diagnosed MM GIMEMA-MM-03-05 EMN01 (BORT-based) (LEN-based)


VMP, bortezomib-melphalan-prednisone; VMPT, bortezomib-melphalan-prednisone-thalidomide; VT, bortezomib-thalidomide; Rd, lenalidomide dexamethasone; MPR, melphalan-prednisone-lenalidomide; CPR, cyclophosphamide-prednisone-lenalidomide; R, lenalidomide; RP, lenalidomideprednisone; d, day; wk, week; yr, year.

Palumbo A et al, JCO 2010 and 2014; Magarotto V et al, Blood 2015

VMP (bort twice or once weekly) or modified-Rd Impact on High Risk Cytogenetic Transplant-Ineligible Patients with Newly Diagnosed MM

	VMP (N=257)	Rd (N=217)	Ρ
Median age (IQR)	71 (69-75)	73 (70-77)	0.001
Chromosomal Abnormalities (%)			
Standard risk	53%	63%	1.00
High risk*	19%	22%	
Missing	28%	15%	


VMP versus Rd PFS Subgroup Analysis

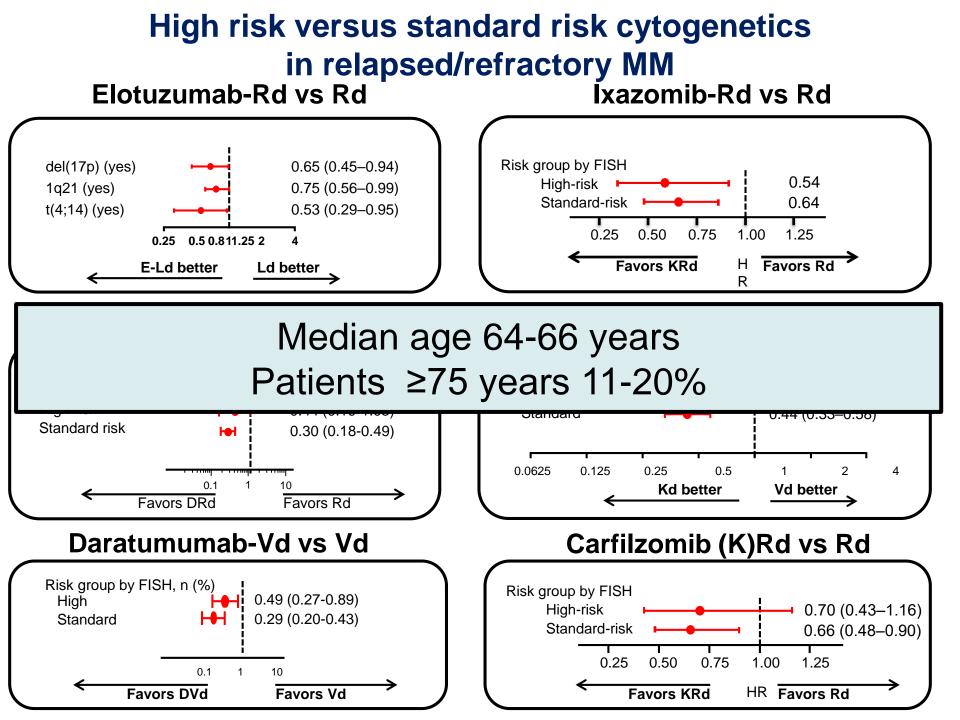
*Interaction-p between StR and HiR FISH

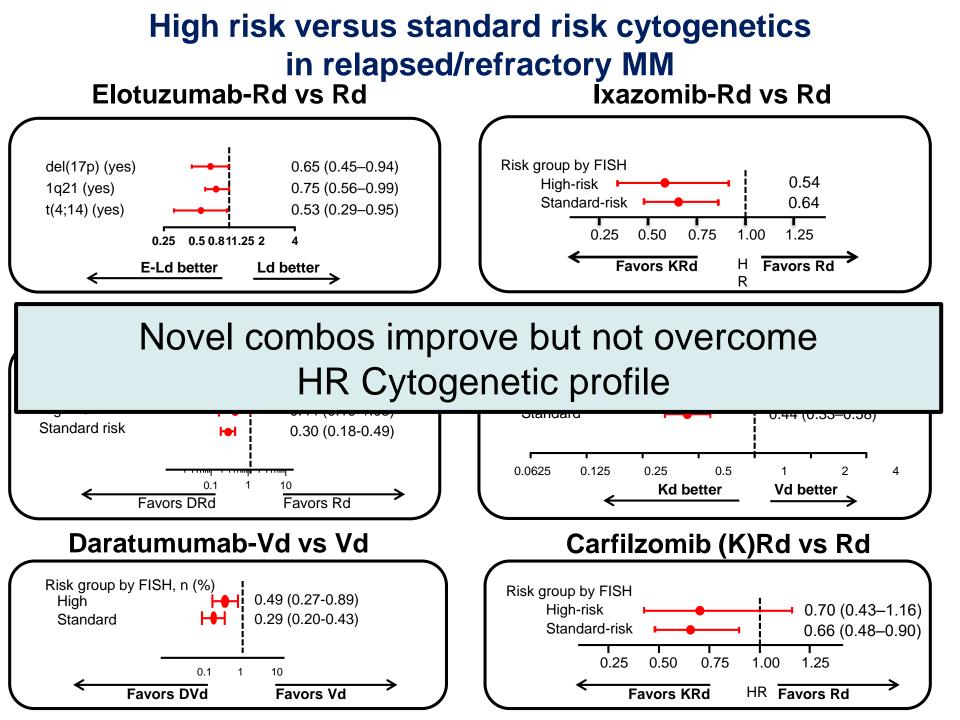
Larocca A et al ASH 2018

VMP versus Rd OS Subgroup Analysis

*Interaction-p between StR and HiR FISH

OS, overall survival; VMP, bortezomib-melphalan-prednisone; Rd, lenalidomide-dexamethasone


Larocca A et al ASH 2018


S blood

Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group

Consensus statement <u>transplant-ineligible patients</u>

- Data in non TE patients are scarce.
- VMP may partly restore PFS in HR cytogenetics
- There are no data suggesting that lenalidomide may improve outcome with HR cytogenetics
- The IMWG group advises treating NDMM patients with HR cytogenetics with the combination of a proteasome inhibitor with lenalidomide and dexamethasone.

How I treat elderly HR cytogenetics NDMM

- FISH analysis in all NDMM patients for risk stratification
- Suboptimal results with doublets (Rd or Vd) (median PFS 8-19 vs 21-37 months in SR patients).
- Median PFS with triplets (VMP, VRD) 12-38 vs 32-33 months reported in SR patients
- The longest PFS in HR patients was 38 months with <u>VRD</u>

Triplet regimen (VMP) for High-risk NDMM patients ineligible for transplant

In Standard-risk patients, choice of treatment according to comorbidities (PNP, RI), fitness/age, compliance and patient preference

In the future better treatment options (VRD, PI-IMiDs combo, plus MoAb) and newer combination in high-risk cytogenetics patients are needed

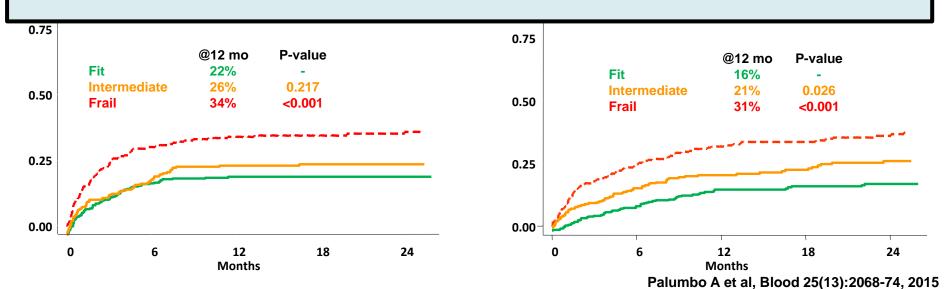
High Risk NDMM Age and Frailty

All elderly patients are not equal Fit or Frail?

IMWG Frailty Score

Variable		HR (CI 95%)	Р	SCORE
AGE	Age <75 years	1	-	0
	Age 75-80 years	1.13 (0.76-1.69)	0.549	1
	Age >80 years	2.40 (1.56-3.71)	<0.001	2
CHARLSON INDEX	Charlson <u><</u> 1	1	-	0
	Charlson <u>></u> 2	1.37 (0.92-2.05)	0.125	1
ADL SCORE	ADL >4	1	-	0
	ADL <u><</u> 4	1.67 (1.08-2.56)	0.02	1
IADL SCORE	IADL >5	1	-	0
	IADL <u><</u> 5	1.43 (0.96-2.14)	0.078	1

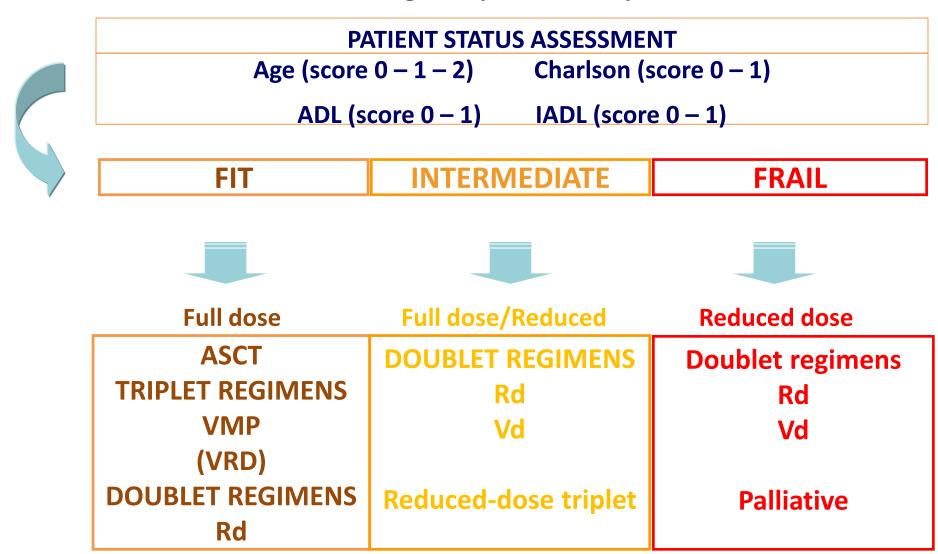
ADDITIVE TOTAL SCORE	PATIENT STATUS
0	FIT
1	INTERMEDIATE
<u>></u> 2	FRAIL


IMWG Frailty Score: long-term outcome

Frail patients

have an increased risk of death, progression, nonhematologic AEs, and treatment discontinuation, regardless of ISS stage, cytogenetics, and type of treatment.

-48


How to select the appropriate therapy Elderly Frail Patients?

No evidence-based medicine in frail patients:

- > No randomized phase III trials
- > No randomized phase II trials
- > No meta-analysis

How I treat Elderly Frail MM patients

Treatment algorithm for elderly MM patients based on balancing safety and efficacy

Larocca A et al, Leukemia 2018

High-risk disease

Capacity to spread outside the bone marrow

Extramedullary Myeloma (EMD)

Incidence ranging from 1,7% to 4,5% at diagnosis

and from 3,4% to 24% at relapse

Plasma cell leukemia (PCL)

More than 20% PCs in PB and/or Absolute PC count > 2x10⁹/L Incidence ranging from 2% to 4% of pts with MM

Treatment of EM

Treatment is challenging. Thalidomide \rightarrow ineffective Lenalidomide \rightarrow anecdotal reports of efficacy Pomalidomide \rightarrow ~ 30% of responses and cross BBB **Bortezomib** \rightarrow anecdotal reports of efficacy Carfilzomib \rightarrow no data available Ixazomib \rightarrow no data available Daratumuab single agent $\rightarrow \sim 21\%$ of responses

Bladè et al. BJH 2001 Calvo-Villas et al. European J Haematology 2011 Short et al. Leukemia 2011

Mussetti et al. Leuk Lymphoma 2013 Lonial et al. Lancet 2016

Still an unmet clinical need! Aggressive approach with novel agents plus chtp

High-risk disease Primary refractory MM

Non-responsive disease in patients who have never achieved minimal response or better with any therapy

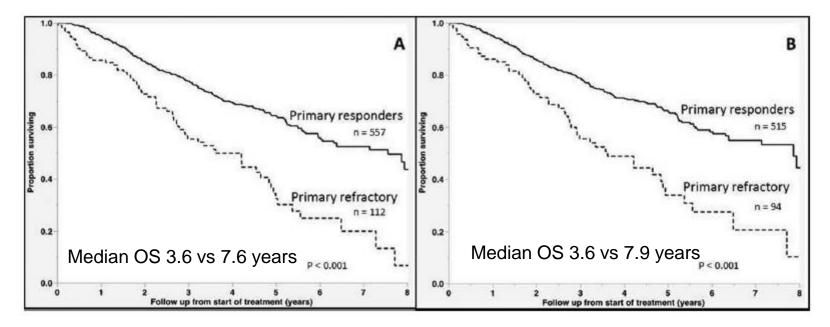
				Primary	Refract	ory.
FIRST Study ¹		n	ORR	SD +	PD =	Overall
 Len + Dex contin 	(Rd)	(535)	81%	12%	2%	14%
 Len + Dex 18m 	(Rd)	(541)	79%	15%	1%	16%
 Mel + Thal + Pred 	(MPT)	(547)	67%	21%	3%	24%
SWOG Study ²						
 Len + Dex 	(Rd)	(214)	71.5%	24%	4%	28%
 Len + Bort + Dex 	(RVd)	(216)	81.5%.	16%	3%	19%
IFM 2009 Study ³						
• RVd		(350)	97%	3%	0%	3%
 RVd + Auto 		(350)	98%	2%	0%	2%
Mayo + PMH						
 CyBORD⁴ 	(VCD).	(33)	88%	-	-	12%

Hulin C, et al. JCO 2016:34:3609-17, ²Durie B, et al. Lancet 2017:389:519-27, ³Attal M, et al. N Engl J Med 2017: 376(14): 1311, ⁴Reeder CB, et al. Leukemia 2009:23:12337

Many novel agents are being tested in NDMM → Future incidence of Primary Refractory MM is unknown

N. Shah, 2017 ASCO Annual Meeting

Majithia N. et al. American Journal of Hematology, Vol. 90, No. 11, 2015


Primary Refractory MM Overall Survival from start of therapy

816 NDMM patients treated at Mayo Clinic 2006-2014 Retrospective review

112 Primary Refractory MM (17%)

OS in the entire cohort

OS excluding patients who did not receive a novel agent with induction

Majithia N. et al. American Journal of Hematology, Vol. 90, No. 11, 2015

Primary Refractory MM Prognostic factors for OS

816 NDMM patients treated at Mayo Clinic 2006-2014 Retrospective review

			variable nalysis	Multivariable analysis ^a		
	Prognostic factor	HR	Р	HR	Р	
\Rightarrow	Older than 65 years	2.0	< 0.001	2.1	<0.001	
	Serum creatinine at least 2 mg/dL	1.9	0.001	1.9	0.14	
	ISS Stage 3	2.2	< 0.001	1.4	0.25	
	LDH over upper limit of normal	1.8	< 0.001	1.9	0.02	
	PCLI at least 1%	1.5	0.006	1.3	0.34	
	BMPC at least 60%	1.4	0.02	0.9	0.63	
	High-risk FISH	1.8	0.002	1.5	0.13	
	Primary refractory MM	2.3	< 0.001	3.2	<0.001	

Primary refractoriness carried the strongest hazard of death, underscoring the prognostic significance of response in the current era.

Majithia N. et al. American Journal of Hematology, Vol. 90, No. 11, 2015

Primary Refractory MM/Extra-medullary and PCL How I treat?

Limited data and few prospective clinical trials in elderly patients!

- Salvage therapies (novel agents, intensive chemotherapy)
- Maintenance therapy
- Palliative care

Can we identify these patients prospectively? Incidence may decrease with future novel agents! More clinical trials nedeed

Treatment Decision Process in Elderly (High Risk) Multiple Myeloma

Patients

- Frailty/fitness
- Hospitalization
- Medications
- Social Support

Multiple Myeloma

- Cytogenetics
- Stage
- Tumor burden

Goals of Care

- CR vs Disease Control
- Balance safety and efficacy
- QoL
- Expectations

Newer Drugs Comorbidities: cardiovascular pulmonary renal functions Compliance to treatment Toxicities Neuropathy DVT/PE Cardiac toxicity

Conclusions

 No treatment regimen showed to consistently improve outcomes in high risk MM

 Future investigations including emerging agents may benefit these patients

 Future risk stratified treatments (cytogenetics)

Acknowledgments

Myeloma Unit, Division of Hematology University of Torino, Azienza Ospedaliero-Universitaria Città della Salute e della Scienza di Torino

Prof. Mario Boccadoro

Dr. Sara Bringhen Dr. Francesca Gay Dr. Stefania Oliva

Dr. Chiara Cerrato Dr. Giusy Cetani Dr. Mattia D'Agostino Dr. Francesca Bonello Dr. Roberto Mina Dr. Marco Salvini Dr. Paola Omedé & Laboratory Staff

Dr. Benedetto Bruno & Transplant Unit

Nurses

Data Managing Staff

Statistician Dr. Stefano Spada Dr. Gianni Ciccone and CPO